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I. The drawing of fibers from melts (or solutions) and their subsequent solidification 
is a widely used production process. However, it has become necessary to conduct this pro- 
cess with a high degree of stability only since the advent of optical fibers. By stability 
here, we mean that the parameters of the process should be such that the fluctuations of a 
fiber having an outlet section with a diameter on the order of i00 ~m should not exceed 
approximately 1 um. This means that it is necessary not only to eliminate the internal 
instabilities inherent in the drawing operation [1-5], but also to minimize the effect of 
unavoidable fluctuations in regime parameters on the diameter of the fiber being drawn. 
Thus, it is obviously important to theoretically analyze the stability of the drawing 
operation and its reaction to external disturbances. 

These topics have been examined by several authors for the isothermal case of drawing. 
It has been found that in this case the internal instability of the drawing process increases 
when the drawing coefficient W = in (Vd/V f) (v d and vf are the drawing rate and the feed of 
the semifinished product) exceeds a certain value W % 3. This leads to a change from a 
steady regime to a regime of nonlinear oscillations [I]. Nevertheless, commercial drawing 
operations, including the drawing of optical fibers, proceed successfully with a high degree 
of stability at values of the draft coefficient on the order of 10-11. The reason for this 
discrepancy is evidently that the conditions of drawing of optical fibers are quite 
different from the conditions on which the above-mentioned studies were based. This applies 
particularly to the nonisothermal nature of the process, when the viscosity of the melt is 
heavily dependent on the temperature. Study of the stability of the drawing operation with 
allowance for additional factors - especially the variability of viscosity - was undertaken 
in [5, 6]. However, there has been almost no investigation of how stability is affected 
by the nonisothermality typical of the drawing of optical fibers or of the dependence of the 
stability of the process and its reaction to perturbations on the temperature regimes. 

The goal of the present investigation is to analyze the dependence of the stability of 
the drawing process and its reaction to external perturbations on temperature regimes in the 
deformation zone under strongly nonisothermal conditions characteristic of optical fiber 
drawing and with allowance for the actual temperature dependence of the viscosity of quartz 
glass. This dependence is usually approximated by the Taman-Felcher formula [7]. Using a 
quantity which is the inverse of the Trouton viscosity* - fluidity D-z _ we obtain the 
following from this formula 

i Tn 
_1(T) = ~0 e r-r_, T>~T_, (i.i) 

to, r <  r .  

Analysis of experimental data [7-9] gives the following values for the constants in this 
formula: ~0 -z = 49.38 Pa-Z-sec -z, To = 25.417 K, T_ = 673 K. 

2. The process of drawing an optical fiber involves the winding of a thin filament of 
quartz glass melted in a heater about a receiving drum. The fiber is drawn frcm a cylindrical 
semifinished product in the form of a rod. The rod is fed continuously into the heating zone, 
and drawing occurs as a result of tension of the fiber created by rotation of the drum. A 

*The Trouton viscosity is three times greater than the shear viscosity of the fluid and is 
numerically equal to the unit tensile force in the axial tension of a cylindrical element 
of the fluid with a unit rate of relative elongation. 
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mathematical model of the process should describe the hydrodynamics of a stream of a viscous 
Newtonian fluid with a length considerably greater than its radius and a vriable fluidity, 
the stream flowing under the action of a tensile force. There is no need for the model to 
account for forces associated with inertia, surface tension, gravity, or the resistance of 
the surrounding gas. According to estimates similar to those made in [i0] for typical condi- 
tions in the drawing of a quartz fiber, all of these forces amount to no more than tenths of a 
percent of the viscous forces. Thus, viscous forces are predominant. Also, the intensive 
heat radiation which takes place throughout the volume of the stream at temperatures above 
2000 deg C makes it possible to consider the temperature to be uniform across the stream 
and to assume that the temperature distribution along the stream axis coincides with the 
profile temperature distribution in the heater. 

With allowance for these circumstances, we can describe the drawing process with a uni- 
dimensional hydrodynamic model which includes equations of momentum and mass conservation 
[lO]: 

sv~ = ~ -  1 [ T(z) 1f(r); ( 2. l )  

s zv  ~ sv  z -~  s T ---- O. ( 2 . 2 )  

Here, z is the coordinate directed along the stream axis, with the origin at the point of 
the temperature maximum; x is time; v(z, T) is the velocity of the stream (at point z at 
the moment of time ~); s(z, x) is the cross-sectional area of the stream; F(~) is the drawing 
force; T(z) is the longitudinal temperature distribution in the heater. 

To be able to model different temperature regimes, we will approximate the temperature 
distribution in the heater with a fourth-order polynomial 

T (z) = (z - a) (z - -  b) ( z - - c )  (z - -  d) ( T +  - -  T _ )  -}- T _ ,  a < b < O  < c < d .  ( 2 . 3 )  
abcd 

Equation (2.3) and, thus, Eqs. (2.1) and (2.2) are examined in the interval z~ [b, c] be- 
cause, in accordance with (i.i), fluidity vanishes outside this interval and thus points b and 
c are the boundaries of the deformation zone; here, the maximum temperature, equal to T+, is 
always reached at the point z = 0. 

Introducing the function y(z, ~), connected with s and v by the relations 

s == soyz, v =: - - Y J Y z , :  

where s o is the time-averaged inlet cross section, we reduce system of equations (2.1-2.2) to 
a second-order nonlinear equation 

~- ly~b, (~) (2.4) Y=Yr  -- Y~Y~ = - - .  

$0 

The function y(z, x) has a simple physical significance. Being the Lagrangian coordinate of 
the medium undergoing deformation, it determines which material point is located at the moment 

of time �9 at point z [II]. 

We introduce the dimensionless variables and parameters: 

Z = z / L ,  Y = y / L ,  t = ~vo /L ,  0 = ( T  - -  T _ ) / ( T + -  T_) ,  (2 .5 )  
S = s/so, V = vlvo,  ~ = ~ m l ~ ,  M ( t )  = F ( t ) L l ~ s o ~ m ,  

8 = (b -~  c ) / ~  - -  b) ,  ~ : 5 + bc/a(c  - -  b ) ,  

1+5 

l = i / p o  ~ t d x ,  ~ = T o I ( T  + - T _ ) , :  ~m=~o e~. 

dx 
Here, v 0 is the time-averaged feed, while L = ~mI--~] . 

b 

Eq. (2 .4 )  t a k e s  the  form 

With allowance for Eq. (2.5), 
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YzzY t  - -  F z t Y z  = M(t)q(Z)Yz. 
The use of dimensionless quantities leads to the equation 

I(i+~,) 
,f ~1 (s) d.~ = 1. 

t($1+5) 

The dimensionless distributions of temperature and fluidity have the form 

( 2 . 6 )  

O(Z) [ z - l ( ~ - 6 D / ( 6 - v ) l l z - t ( - i  + @ [ z - t ( l  + a " l [ z - t ( i - ~ ) / ( a +  v)](v~'6D 
= t 4 ( l  - -  6 2 )  3 " 

~l(Z) = e~t~-l/o(z)J, l ( - - I  + 6) ~< Z ~< l( l  + 6), 

where 6 and ~ are parameters accounting for the asymmetry and completeness of the temperature 
profile; $ is a parameter characterizing the degree of heating of the glass in the deforma- 
1~ion zone. Variation of the parameters 6, u and $ makes it possible to obtain different 
distributions e(Z) and q(Z) in the deformation zone in order to select the optimum tempera- 
ture regime. The dimensionless values of the velocity and cross section of the stream are 
calculated from the formulas 

V = - -Y 'dYz ,  S = Yz" ( 2 . 7 )  

Let us examine the question of the boundary conditions for Eq. (2.6). The following 
functions of time are the initial data in the problem of fiber drawing: the inlet cross 
section S_, the fed of the glass rod V_, the drawing rate V+. The last quantity is specified 
in order to determine the drawing force M(t), which is usually unknown under actual produc- 
l-ion conditions. The above functions must be augmented by one more function which charac- 
terizes the initial state of the fiber Y+(Z) at each point Z of the deformation zone. With 
allowance for this, we write the boundary conditions 

r ( z ,  o) = Y+(Z), (2. s) 
y z [ / ( - - t  + ~), t] = S_(t), 

Y t [ l ( - - I  + 6),. t ] /Yz[ l ( - - I  + 5), t] = --V_(t), 
Yt[ l ( l  + 5), t]/Yz[l(l  + 6), t] = --V§ 

The steady-state solution of problem (2.6), (2.8) for the case S_ = i, V_ = i, V+ = e W, 
where W = in (V+/V_) has the form 

Y'o = (Z, t) = y e-w~(~)dx --  t,: ~ (x) = ~1 (g) dy. 
I(-1+6) I(-i+6) 

(2.9) 

Here, Y0(Z, t) depends on time but, in accordance with (2.7), gives physically observable 
quantities which are independent of time: rate and cross section. 

A steady drawing process is optimum from a practical point of view. In such a process, 
the area of the outlet cross section of the fiber is constant. However, in reality, there 
are always random unsteady phenomena due to the presence of a large number of practically 
unavoidable perturbing factors. Thus, the feed of the glass rod and the drawing rate may 
experience small fluctuations connected with vibration of the unit or eccentricity of the 
pulleys and pinions in the drive mechanisms. The inlet cross section of the stream may 
change slightly due to geometric irregularities in the rod originating in its manufacture. 
Finally, the temperature - and thus the fluidity - of the molten glass is subject to 
fluctuations due to hydrodynamic instabilities during convective heat transfer in the 
heating zone and unsteady heat release by the heater or fluctuations of heat transfer in 
the cooling system of the heating element. The drawing itself may also turn out to be 
internally unstable, which would lead to an irregular intensification of small initial 
perturbations. All this indicates the need to analyze unsteady drawing processes. 

We will examine two types of problems. 
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i) Unsteady perturbations of a steady drawing regime caused by small fluctuations of 
regime parameters about their mean values (the problem of the reaction of the process to 
process-related interferences). 

2) The stability of the drawing operation, examining the evolution, with constant 
regime parameters, of small perturbations of the initial state over time. 

By virtue of the foregoing, we represent the boundary functions and fluidity as the sum 
of their mean values and small fluctuating complements: 

V_ = I -}- sap(t), V+ = e w -]- seWn(t ) ,  S _  = t -~ e(p(t)~ 

M = W + ca ( t ) ,  rl = e~n-~/o(z)l + e~,(Z, t) .  

(2.1o) 

Here, ~, M, ~, and a are functions normalized on unity; e is a dimensionless parameter which 
accounts for the smallness of the unsteady complements. This circumstance allows us to 
resort to standard linearization of the problem by the method of perturbation theory: To 
do this, the sought unsteady solution is represented in the form 

Y(Z, t )=  Yo(Z, t ) +  sp(z, t), (2.11) 
where P(Z, t) is an unsteady perturbation of motion. 

Inserting (2.10) and (2.11) into (2.6), (2.8) and linearizing all of the relations 
with respect to e, we have the boundary-value problem for P(Z, t): 

ew~tZ)Pzz + e w~(z) W~Pz + Pzt + WqPt = - - ~  - -  W~; ( 2 . 1 2 )  

P(Z, O) = P+(Z)r Pz[/(--I + 6), t] = r (2.13) 

Pt[ l ( - - t  + 6), t] = - - r  - -  r  P t l l ( t  + 6)~ t]  

= --eWpz[l(l  + 6), t]  - -  x(t) ,  

S i n c e  a n y  r a n d o m  f l u c t u a t i o n s  o f  t h e  r e g i m e  p a r a m e t e r s  c a n  be  r e p r e s e n t e d  a s  a s u p e r p o s i t i o n  
of elementary harmonics, we are mainly interested in the reaction of the drawing process to 
harmonic perturbations. As a result, we will examine only harmonic perturbations of the 
function having the form 

" 0  ,. 

,1 (Z) v o COS [2kHZ n]  e - ~ t  
,~ (Z, t) = e-4q~ tc----e-b + " 

(2.14) 

From here, we write the solution of boundary-value problems of the type (2.12), (2.13) as 

P(Z, ~) = e~ r~ = aoeO~, (2.15) 
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where F(Z)== PI(Z)]-gP~(Z);~o == al-~ ~a~; a ..... ~- i~ . (In problems concering the response to 
]process interference, ~ = 0.) 

We introduce the notation: 

P2 = eW~(z)P~, P4 = eW~(Z)P~. (2.16) 

Inserting (2.14-2.16) into (2.12) and separating the real and imaginary parts, we 
obtain a system of ordinary differential equations in Pi (i = i, 2, 3, 4): 

r 

Pi = e-W~P~, (2.17) 

P~ =--%q-- f (Z)  W+W~P~ + e-W~p2--W~P~--~e-W~P4, 

P~ a=q +Wq~P 1 + ~e-W~P~ +W~P~ + e-W~P~, 

where ](Z) = ~ c o s  [2kIIZ[c - ~ -  b -F n] for a problem on the response to temperature perturbations. 

3. Let us examine a problem on the stability of the drawing operation. It is described 
mathematically by system (2.17) with f = 0 and the following homogeneous boundary conditions, 
obtained by insertion of (2.15) and (2.16) into (2.13) with zero perturbing functions 
(~ = ~ = < = 0 ) :  

Pl = P2 = P~-- P4 = O, Z = l[-- t  -k' 6]; 

~oP~ + P.~ .... ~Pi = O, - - ~ P a  -- ~~ '~- P~ = O, 

z = t i t  + ~1. 

(3.1) 

(3.2) 

To find a normal mode of the form (2.15) in the problem, it is necessary to calculate the 
roots ~0 and ~0 of system (3.2). The values of the functions Pi (i = I, 2, 3, 4) in this 
system at point Z = Z[I + 6], dependent on ~ and ~, are determined by solving (2.17) (with 
f = 0) with boundary conditions (3.1). Using the initial approximations of ~3 and ~J (j = 
i, 2, 3) for fixed W, system (3.2) was solved numerically by Stephenson's generalized method. 
Meanwhile, Heming's method was used to solve problem (2.17), (3.1) at each step to calculate 
Pi with the current values of ~ and w. 

Figure 1 shows the dependence of the damping decrement ~0 of the lowest mode of problem 
(2.17), (3.1), (3.2) on the rate coefficient W for different temperature regimes and 7 = 
10-7 (8 = 1.2; 1.2; i; 1.2; 10 -7 , 6 = -43.2; 0; 0; 0.2; 0 - lines 1-5). (The lowest mode 
is considered to be the mode with the smallest decrement [5].) The mode selection was 
determined by the selective of the initial approximation of ~i and w i. Stable regimes 
correspond to positive ~0, and the values of W at which ~0 = 0 are called critical values 
(and designated as W,). To illustrate the transition of the drawing operation from the 
stable regime to the unstable regime, we have chosen temperature regimes with small values 
of the parameter $ at which this transition is seen. An actual drawing regime corresponds 
to values of ~ on the order of 10-20. As calculations showed, at these values the process 
is absolutely stable for practically any attainable value of W. 

The most important result of the solution of this problem is the demonstration of the 
strong dependence of the stability of the drawing operation on the temperature regime and 
the possibility of stable, steady drawing in the nonisothermal regime at high values of the 
rate coefficient typical of optical-fiber drawing. Thus, this fact, already known from 
experience, receives theoretical substantiation. 

4. In analyzing the reaction of the drawing operation to external disturbances, we 
examined four cases: 

a) perturbations of drawing rate (% = ~0 = v0 = 0, • = i) ; 

b) perturbations of feed (% == • -= v0 = 0, ~0 = i) ; 

c) perturbations of the inlet cross section ~0-= • =~v0 = 0~% = i); 
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d) perturbations of temperature and, thus, fluidity (~0 = 90 = ~0 = O, ~0 = ~). 

The results of the solution are shown in the form of amplitude-frequency characteristics 
(AFC) describing the ratio of the relative amplitude of the perturbation of the outlet cross 
section of the fiber to the relative amplitude of the perturbation of the corresponding 
parameter: 

A+ I~s (~)/s+ I ] / e l  it d + 8)1 + P~ It (i,' + 8)1~ 
= [ 6 a ( ~ ) / a ]  = " - 

where S+ = e -W is the steady-state outlet cross section; 6a(~) and a are the perturbation and 
the steady-state value of the parameter. 

Figure 2 (~ = 10 -7 ) shows the AFC for perturbations of drawing rate or feed * with a fixed 
value of W = in 104 for different stable temperature regimes (6 = 0; 0.i; 0; 0.i; -0.2, 8 = 
5; I0; i0; i0; I0 - lines 1-5). It follows from them that the reaction of the process rapidly 
decays with an increase in frequency and becomes insignificant for values of dimensionless 
frequency ~ > 50, which corresponds to %0.i Hz. A small increase in the relative perturbations 

�9 % 

of the outlet section of the fiber in the low-frequency region does not lead to a gain greater 
than 1.2 in any of the temperature regimes and is quickly replaced by a sharp decrease after 
attainment of a maximum at frequencies ~ % 15. The main factors affecting the reaction of 
the process in the case of drawing-rate perturbations is the degree of heating of the glass mass 
(the parameter 8) and the degree and direction of asymmetry of the temperature profile (the 
parameter 6). The optimum temperature regime from the viewpoint of stability is the regime 
characterized by the presence of a temperature maximum in the bottom region of the deformation 
zone. The drawing operation also stabilizes with a decrease in the temperature T+. 

Figure 3 (8 = 1.5; 5; i0 - lines 1-3, 6 = 0, u = 10 -7 ) shows the AFC for perturbations 
of the inlet section. Here, the main difference from the previous case is a continuous increase 
in the AFC with frequency and a gain which is more than order of magnitude greater. Nevertheless, 
perturbations of the inlet cross section cannot lead to significant fluctuations in the outlet 
diameter of the fiber in the high-frequency region because high frequencies of oscillation of 
the inlet section correspond to a small spatial period of'the geometric irregularities of the 
rod and a low relative amplitude for these irregularities. Thus, dimensionless frequencies 

% 30 or more correspond to a spatial period of i mm or less for the irregularities. It is 
clear that a glass rod i cm in diameter - for which the final processing operation is fire 
polishing - cannot have significant geometric irregularities on such a small scale. 

The dependence of the AFC on the regime temperature parameters is unimportant except for 
the parameter 8 (curve I, Fig. 3). However, 6 may vary broadly (8 ~ 5-15) for actual condi- 
tions of drawing quartz fiber. The results of calculation of the AFC for perturbations of the 
fluidity of the molten glass are shown in Fig. 4 (8 = i0; i0; 5; I0; i0; k = i0; i; i; i; O, 

= 0; ~/2; O; O; 0 - lines 1-5, 6 = 0, u = 10-7). This case is characterized by higher 
gains (tenfold). Also seen here is a maximum of the reaction of the process to the perturba- 
tions at frequencies ~ % 30-40. However, further decay of the reaction with an increase in 

*The numerical experiment showed that the reaction of the drawing operation to perturbations 
of these parameters is the same. 
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frequency occurs very slowly, so that the reaction remains significant for high frequencies 
as well. With allowance for the fact that perturbations of temperature and, thus~ fluidity 
are characterized by relatively high frequencies (on the order of 1Hz or ~ ~ 500 in 
dimensionless form), the last result leads to the conclusion that temperature perturbations 
in the deformation zone are the main cause of high-frequency perturbations of the outlet 
cross section of the fiber. 

It is important to note that we observed a sharp increase in the reaction of the process 
with a decrease in the spatial scale of the temperature perturbations~ The AFC's obtained 
and typical values of the dimensional parameters produce the following estimate of the 
effect of temperature perturbations: for temperature perturbations with an amplitude of 
1 deg C at frequencies greater than 0.i Hz, the amplitude of the perturbation of the 
diameter of an optical fiber may be 3 pm. 
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